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We show rigorously that the ground state of a quantum chain with competing 
ferromagnetic nearest and antiferromagnetic next nearest interactions undergoes 
a transition from ferromagnetic to helical type, in the isotropic case, for a 
certain value of the relevant ratio of coupling constants. Boundaries of the phase 
diagram are also determined in the anisotropic case. The stability of a special 
quantum state (corresponding to a classical modulated phase of ~ =n/3) is 
analyzed by an extension of Holstein-Primakoff arguments, along a line of 
constant ratio of couplings, showing in particular a sequence of (instability) 
gaps. Finally, a natural adaptation of a variational wave function due to Huse 
and Elser is used to study several portions of the phase diagram, with very good 
agreement with previous theoretical results. 

KEY WORDS: Quantum chain; competing interactions; ferromagnetic and 
helical ground state; spin waves; variational wave functions. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

F r u s t r a t e d  He i s enbe rg  mode l s  have  been a subject  o f  g rea t  recent  interest ,  

as d e m o n s t r a t e d  by two  reviews, t~'2~ This  is mos t ly  due  to the search for 

a t w o - d i m e n s i o n a l  m o d e l  wi th  a sp in- l iquid  o r  r e s o n a t i n g - v a l e n c e - b o n d  

g r o u n d  state,  re la ted  to the  possible  magne t i c  or ig in  of  h igh-Tc  super-  
conduct iv i ty .  C~ There  is, however ,  a fur ther  genera l  in teres t  in nonclass ica l  

states,  such a s - t w i s t e d  or  chi ra l  states,  again  in two  d imens ions ,  bu t  

mos t  w o r k  on  the  subject  has  been numer ica l ,  (2~ except  in one  d imens ion ,  

where  s o m e  ana ly t ica l  results have  been  found.  A m o n g  the la t te r  is the  
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antiferromagnetic Heisenberg model with competing next-nearest-neighbor 
interactions: 

N N 

a f '=  y '  S , - S , + ~ + p  E S,.S,+2 (1) 
i = 1  i = l  

where p > 0. 
For p = 1/2 and the spin quantum number S =  1/2, Majumdar and 

Ghosh found the exact ground state in the form of a nearest-neighbor 
dimer state ~s) and further anisotropic generalizations have been studied, t4'5) 
Affleck et aL (6) have found the first rigorous example of an S = 1 quantum 
chain with a resonating-valence-bond ground state, and in ref. 7 a (helical) 
ground state of a Heisenberg chain with Dzyaloshinski-Moriya (DM) 
interactions has been constructed by the Bethe Ansatz. This list is not 
exhaustive, refs. 8 and 9 may be referred to for further references. 

In this paper we study a model related to (1): 
N N 

a~'N = - Z  S , . S , + , + p  ~ S, .S,+z (2) 
i = 1  i = 1  

where S; are spin-one-half operators, 

SN+i=Si (3) 
and 

p > 0  (4) 

Although (1) and (2) differ only by a change of sign in the nearest neighbor 
interaction, the ground-state properties of the two models are entirely 
different. Rather than of dimer type as in (1), the ground state of(2) is of 
helical type for p > 1/4, and ferromagnetic for p ~< 1/4, as will be rigorously 
shown in Section 2. The latter part had already been shown by Bader and 
Schilling (~~ by a beautiful and very simple method. 

Hence, in contrast to the ground state of the DM model of ref. 7, 
which is helical for all parameter values, (2) exhibits a ( T = 0 )  "phase 
transition," in agreement with the classical model (ref. l l ,  or ref. 9, 
Chapter 3). This behavior is also similar to the ground state of the one- 
dimensional ANNNI chain, but there the transition is between the ferro- 
magnetic and the (2, 2) state (]2) and occurs at p = 1/2, not p = 1/4. One is 
therefore naturally led to a model which interpolates between the two: 

N 

x x y y ) + S ~ S ~ + l  } ae (p, a )  = - Y. { a ( s ,  s,+, + s,  s,+, 
i = 1  

N 
x x y y +p T. (5) 

i = l  
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with 

O~<A~<I (6) 

and (4) again assumed to hold. 3r 0) reduces to the one-dimensional 
ANNNI chain, and ~vgN(p, 1) is the isotropic model (2). This model may 
thus be viewed as a quantum analog of the ANNNI model (for another 
one, see ref. 9, Chapter 5). 

Our main motivation in this paper is to investigate how quantum fluc- 
tuations alter the Ising or classical ground-state structures, for the simple 
model (5). Even in the Cayley tree, ANNNI models display an enormously 
rich phase diagram, with a multitude of modulated phases and multi- 
critical points. "3) What happens to such modulated phases in quantum 
systems? This question does not seem to have been investigated in detail 
(see, however, ref. 14). In Section 3, we discuss the stability of a particular 
modulated phase along a special line of the phase diagram. The elementary 
excitations are studied in the usual approximation of keeping only 
quadratic terms in boson operators and starting from a (classical) ground 
state. Justification of this (Holtein-Primakoff) approximation is difficult 
even for large S in the pure ferromagnetic case, ~]5) but it is widely believed 
(and may be checked in some casesJ ]5)) to yield the correct results even for 
S =  1/2. Due to the competing interactions, however, a more sophisticated 
form of the Bogoliubov transformation is required, and is developed in 
Section 3. The final result shows forbidden zones (gaps) in the excitation 
spectrum for A :~ 1. This is interpreted there in the light of the effect of 
quantum fluctuations on the modulated phases, and some conjectures are 
formulated. 

Due to the next-nearest-neighbor interaction in (5), Bethe Ansatz 
methods are not applicable. In addition to the previously mentioned exact 
result for A = 1, some other analytical results are given in Section 2. They 
lead to the following conjecture for A = 1. Let us define the operator 

N 

SZ= ~ S~ (7) 
i = 1  

Clearly, IS  z, 3r A)] = 0. Let M e  [0, N/2] denote the eigenvalues orS z. 
The conjecture is: for p >P0 = 1/4 and A = 1, the ground state lies--for N 
even--in the sector M =  0. For p ~< Po the ground state is ferromagnetic. 
Since further analytical results seem to be out of reach, we attempted to 
find a good variational wave function. This is accomplished in Section 4, 
where we propose a modification of the Ansatz used by Huse and Elser, c~6) 
in order to accommodate for the angles corresponding to the helicoidal 
state or modulated phases. The boundary between the ferromagnetic and 
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modulated-phase region, as well as the boundary of the modulated phase 
corresponding to 0 =  re/3, are found. The data agree very well with the 
existing exact results. The conclusion of Section 4 is that (properly modified) 
Huse-Elser wave functions are excellent even for models with competing 
interactions. Section 5 is a conclusion, where we also state some of the open 
problems. 

2. RIGOROUS RESULTS 

For o~f'N(p, A) a variational upper bound for the ground-state energy 
EN exists: 

Eu <<. min{ - �88 �88 - 1)} ( 8 )  

The bound EN<~N(p- 1)/4 is obtained by calculating the expectation 
value of 9r A) of any of the two degenerate ferromagnetic ground states 
t 2 ~ ) = Q , . u = , [ + ) i  o r  ~'2~-/~):(~)N=I I-->i, where S Z l _ ) / = + � 8 9  
and EN<~--Np/4 results from the variational wave function 12)=  
1+ + - -  + + . . . . .  )N (or the translate of 12) by one lattice space), in 
an obvious notation. The terms in 'g'N(P, A) involving the operators S; ~ and 
S,. y yield zero in the expectation values on any of the above (Ising) wave 
functions. For p~> 1/2, -N/4<~N(p-1)/4, which means that the wave 
function 12) has lower (Ising) energy. 

The method of Bader and Schilling I1~ is very simple and elegant. It 
was originally formulated in the context of the isotropic model (2), but we 
shall need it for the slightly more general Hamiltonian (5), so a brief review 
is in order. We write 

YfN(P, A) = ~ .~ffC(p, A) (9) 
C 

where Z c  denotes a sum over "cells" of the "cell Hamiltonians" HC(p, A). 
For cells with three sites, for instance (the same used in ref. 10), and 
C =  Co= {1, 2, 3}, 

ae~ , . . . . . . .  ~ " s~s~} = - ~ {a(s ,  s= + s l s y )  + Sl s~ + a ( s 2 s 3  + s=s3)  + 

x x y y g z 
+ p{A(S, S 3 -q- S I S 3) -[- Sl S3} (10) 

The sum (9) is over all (overlapping) cells with three sites, C =  { I, 2, 3}, 
{2, 3,4}, {3,4,5},  etc. Periodic boundary conditions are assumed for 
g~(p,A) (not for the individual cell Hamiltonians, which have free 
boundary conditions) and correction for multiple counting due to cell over- 
lap [this accounts for the factor 1/2 in the p-independent terms of (10); 
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for next-nearest-neighbor interactions and cells of three sites, there is no 
multiple counting] guarantees together that the two terms, on the r.h.s. 
and 1.h.s. of (10), are equal. By (10) one has the lower bound: 

EN >1 NE toC) ( 11 ) 
where 

E ~o c) = smallest eigenvalue of ovg C(p, A ) (12) 

Eto c~ is, of course, independent of which cell C is considered. If 

gtoc)> p -  1 - T -  (13) 

it follows from (11) that there exists a ferromagnetic ground state of 
gN(P, A), because ( p -  1)/4 is the ferromagnetic ground-state energy per 
spin, and t2~-~ ~ is an eigenstate of JC'N(P, A). 

We now compute E~o c), given by (12). In contrast to (2), for which the 
total angular momentum S 2 commutes with 3r only S z, given by (7), 
commutes with Jr A). By the symmetry of rotation by n about the x 
or y axis, we need only consider the subspace with M >/0. For the present 
case, M = 3/2 and M = 1/2. The M = 3/2 subspace is spanned by I + + + ) ,  
whose energy equals the ferromagnetic ground-state energy per spin 
(p - 1)/4, and may thus be discarded. The M = 1/2 subspace is spanned by 
the vectors [ + + - ) ,  r ] + - + ) ,  and [ - + + ) .  The Hamiltonian matrix 
in this subspace is 

- 1 + p  (14 )  

A --A -- 

One eigenvalue is 

Eo= � 8 8  2pA) (15) 

and the others are 

E• = ]{1 +2pA + [(I + 2 p - 2 p A ) 2 +  8A2] 1/2} (16) 

By (13), the ferromagnetic phase occurs in the region defined by the two 
inequalities 

1 1 
-4 ( P - 1 ) ~  E ~  P~2(1  + A---~) (17) 

1 I + A  
-~ (p--1)  <~ E_ ~ p<~---f-- (18) 
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Somewhat surprisingly, this (presumably) rough bound yields the correct 
result po = 1/2 for A = 0  (Ising case), t~z) It also yields p o =  1/4 for A = I  
(isotropic case), which, of course, agrees with ref. 10. Is the real transition 
point for zl = 1 closer to the Ising value P0 = 1/2 or to the classical value ~a~ 
Po = 1/4? One might expect the anisotropic quantum (Ising) limit to be 
closer, since we are treating the case of small spin, S =  1/2. For that 
purpose, a cell with four sites seems much more natural, because it accom- 
modates a structure "of type" 12), i.e., 12> with quantum fluctuations. 
However, the bound obtained with four-site cells is worse than the one 
given by three-site cells; for A = 1, for instance, we get P0 = 2/9 = 0.222 .... 
We are going to show below that, for A = 1, the ferromagnetic phase 
extends up to p = 1/4. Thus, the three-site cells yield the exact result! This 
result is, in our opinion, amazing. One would expect an improvement as 
the number of sites in a cell increases, because the lower bound becomes 
exact in the limit of cell size equal to N. 

P r o p o s i t i o n  2.1. There exists a saturated ferromagnetic ground 
state for J~eu(p, 1) if and only i fp  ~< Po = 1/4. 

Proof. We already know that the ground state is ferromagnetic for 
p ~< l/4 by the previous (Bader-Schilling) result, Let 

where 

Then 

q/N=exp(AN) (19) 

N 

AN = iO ~ IS~ (20) 
1 = 1  

N 

Y/~, YfjvagN = - ~ {cos 0 St. St+, + (1 + cos 0) $7S++ 1 + sin 0(S, x S,+1 )-~} 
/ = 1  

N 

+ p ~ { cos 20 S/- $1 + 2 + ( 1 - cos 20) S~ $7+ 2 
1 = 1  

+ sin 20($/x Si + 2)" + O( 1 ) (21 ) 

where x denotes vector product, and O(1) denotes the effect of q /+( . )q /u  
on boundary terms, which therefore tend to zero upon division by N. 
By (21) 

< g2~ ', q/~ J/FN #/NO~ >) = - ~ - c o s  0 +  cos 20+  O(1) (22) 
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where O ~  ) is any of the two degenerate ferromagnetic ground states as 
previously defined. Hence, the energy e~ of the normalized state ~ 
in the thermodynamic limit is 

e~ = �88 - c o s  0 + p cos 20) (23) 

for 0 =  arccos(1/4p) and I fp  > 1/4, e~ assumes its minimum value e~ 

e~ - ~  - - p -  < ~ ( p - 1 )  (24) 

This proves the proposition by the variational principle. II 

Romark. We have not considered the possible nonunicity of ground 
state of the infinite system, hence the cautious statement of Proposition 2.1. 
A nonsaturated ferromagnetic ground state has not been ruled out for 
p > 1/4, but even in this case a "ground-state phase transition" occurs, 
because the ground-state energy per unit volume is, for p > 1/4, lower than 
that of the (saturated) ferromagnetic phase, which occurs for p ~< 1/4. 

The physical meaning of q/N is clear: it rotates each spin around the 
x axis by the same angle 0 relative to the previous one, and hence generates 
a "helical" configuration. Thus, one may conjecture that the ground state 
is of helical type for p > 1/4. 

It is interesting to know whether this ground state belongs, for N even, 
to the M = 0  sector. Unfortunately, the Lieb-Mattis theorem (]7) does not 
apply, so that a rigorous proof is missing. We therefore solved the N =  4 
case with periodic boundary conditions exactly. This solution will also 
be important as a test of the Huse-Elser variational wave function in 
Section 4. The total spin S has in this case the possible values S = 0, 1, 2. 
The degeneracy ds of the state IS, S )  is given by 1~8) 

4! 
d s = (2S+ 1) (25) 

(3 + S)! (2 - S)! 

For S = 0 this yields do = 2. The two orthogonal, normalized states are 

[O0)]=l~{[-- +-- +> +[+- -  + - - > -  [-- + +- - ) - -  [+---- +>} (26) 

I O O ) 2 = ~ { I -  + - + )  + I + - + - )  + I-  + + - )  + 1 + - - + )  

--2 I+ + - - - )  - 2  I---  + +)} (27) 
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which may readily be found by angular momentum techniques. The 
Hamiltonian matrix in this subspace is 

1 ( 3 w/3 (2p + 1)'~ (28) 
v/3 (2p + 1) ( - -4p+  1) J 

whose lowest eigenvalue is E(0 4)= -3p.  For p > 1/4, E(o 4) is smaller than the 
ferromagnetic ground-state energy E ~ ) = ( p  - 1). Thus, for p >  1/4, the 
ground state lies in the M = 0 subspace. 

Section 4 provides further evidence that for p >Po and A = 1 the 
ground state is in the M = 0 sector for N even. Assuming that this result is 
true we have (in the case without anisotropy): 

Proposition 2.2. If (ON, S=[2N)=0 for ON a ground state, if 
p > 1/4, Yg~(p, 1 ) is gapless in this region. 

Proof.  The proof follows Aftleck and Lieb (tg) and, indeed, was 
sketched by them also for situations such as occur in the present case. Let 

N 

A N = i y .  IS~ (29) 
1 = 1  

Then 

[-)~,v(P, 1), AN] = ~ { --(S, x St+, )-" + 2p(S, x S,+ 2) =} 
/ 

and defining 

we have 

where 

and 

(30) 

~ (31) 

~ ~fu(P, l) q/N - ~u(P, A) = B N +  Cu 

N 

�9 Y Y BN=(1 - c o s 0 ]  }-" (S)~S~+, +StS,+,)  
I = 1  

N 

+ p(cos 20-- 11 ~ (S~[S)~+z + S~'S~'+2 ) 
I = 1  

N N 

CN= - s i n  0 ~ (S lxS l+ l )=+ps in20  ~ (SlxSt+2)-" 
I = 1  I = 1  

(32) 

(33) 

(34) 
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Taking 

2~ 
0 = - -  (35) 

N 

we have that the expectation value of B/v in a normalized state is O(N-1).  
Writing sin 20 = 2 sin 0 (cos 0 - 1 + 1 ) in the second term of CN, we see by 
(30) that the expectation value of CN on a normalized state is the same as 
that of the operator 

sin 0 [ ~r 1), A~] (36) 

plus a term O(N-2). The operator (36) has zero expectation value on any 
eigenstate of Jf, v(P, 1) (such as the ground state), and hence the proof 
proceeds as in ref. 19. | 

Unfortunately, for the infinite system the best results ~19) cannot dis- 
tinguish the situation with unique ground state and no gap from the one 
with a degenerate ground state. 

In the case of nonzero Ising anisotropy 0 < A < 1, the classical ground- 
state energy is given by the formula (61), below. It is conceivable [see 
(61)] that the corresponding phase diagram is very rich, with many com- 
mensurate phases and perhaps even a devil's staircase. In particular, for 
some (p, A) a possible helical phase with period of seven sites, whose Ising 
version would be (3up, 4down), might occur. Therefore, a nonzero ground- 
state magnetization cannot be excluded. 

3. SP IN-WAVE THEORY 

In this section we formulate a spin-wave theory appropriate for 
modulated structures/2~ To this end, we consider first the classical 
( S ~  ~ )  limit of Hamiltonian (5). In this limit the operator St/S becomes 
a unit vector s / and  ,,~ff/S 2 becomes a classical Hamiltonian ~ (  {st} ). As 
one varies the parameters p and ,4, the classical ground state is expected to 
display a multitude of modulated structures besides the ferromagnetic one. 
For a fixed value of the parameters we denote by { rot} the set of values of 
{sl} that gives a minimum o f ~ t .  

Next we define a transformation on the Hamiltonian (5) such that the 
classical ground state will be the ferromagnetic state. Let us denote by r the 
unit vector parallel to the magnetization of the ferromagnetic state. If we 
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denote by nl the unit vector parallel to ml x r and by 0/the angle between 
r and mh the transformation is given by following unitary transformation: 

S, t (37) 

which rotates any vector operator associated with site 1 by an angle 01 
around nt, bringing it to the reference direction r. The ground state of the 
classical limit of the transformed Hamiltonian q/-]~vfa// will then be the 
ferromagnetic state. 

The perturbation away from the classical ground state, which is now a 
ferromagnetic state, is performed on the transformed Hamiltonian by using 
boson operators through the usual Holstein-Primakoff transformation 

S~ = S-a~-a  t (38) 

( S ; = S ' ;  + iSJ/=(2S) ]/z 1 - -T f f -  j al (39) 

S;- = S 7 -  iS~t'= (2S) 1/2 a~ + 1 - - - ~ j  (40) 

For the range of values ofp and A given by (4) and (6), the classical 
modulated structures are of helical type, so that ml will lie in a certain 
plane independently of I. Choosing this plane to be the yz plane and the 
reference direction along the z direction, that is, r -- (0, O, 1 ), we have 

ml = (0, sin 01, cos Oi) (41) 

and nl= (1, 0, 0). The unitary transformation is then given by 

ql=exp { i ~  01STt (42) 

and rotates the spin operator Sl by an angle 01 around the x axis, that is, 

qg-l S'Tql - S  t -  .~ 

ql-  ]s~'q/= S'; cos 01-  S~ sin O/ 

~ ]S~q/= S~' sin Oi + S~ cos Oi 

(43) 

(44) 

(45) 
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The t ransformed Hamil tonian  g ' =  o//-]jgo//will be 

Y-" ." " + f~YS~S~} 
I 

x x *v  y y ~_.7 2 7. + P ~  { a S i S l + l  + g't StSI+,_.+ gt $1S1+2 
I 

1"7. y Z + g t  $1 S,+2 + g?'S~S~+2} (46) 

where the coefficients f 7  a and g7 a are given by 

f l Y =  A cos 01 cos 0/+ t + sin 01 sin 0/+ t (47) 

f~-" = A sin 01 sin 0t+ ~ + cos 01 cos 01+ ~ (48) 

fY~ = - A  cos 0/sin 01+ l + sin 01 cos 01+ ~ (49) 

f l  y = --,d sin Oj COS 0~+~ + COS O~ sin 01+t (50) 

and 

g~'>'= A cos 81 cos 0/+ 2 + sin 0/sin 01+2 

g ~  = A  sin O~sin 81+2 + c o s  01cos 8/+ 2 

g-}'7- = - A  cos 01 sin 81+2 + sin Oi cos 01+2 

g~>" = - A  sin 01 cos 01+2 + cos 0/sin Os+z 

(51) 

(52) 

(53) 

(54) 

Using the Hols te in -Pr imakof f  t ransformation and expanding to order 
S -  1, we obtain the following expression for J r '  up to quadrat ic  terms in 
boson operators  at and a + : 

,g~' = ~ { A,(a,a~+] + a f a , +  ]) + B,(a,a,+ ~ + af-a;-+ ]} 
I 

+ Ct(ata~-+ 2 + a;- at+ 2) + Dl(atat+ 2 + a;- a~+ 2) 

+ Ftaf-at} + E (55) 

where the coefficients A~, B~, Ct, D /and  F t are given by 

S 
A, = - ~ (A + f-~"') (56) 

S 
B, = - ~ (A - f~'Y) (57) 

S 
c , =  p -~ (~ + g;'.") (58) 

S 
D, = p ~ (A -- g-;Y) (59) 
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and 
.~_ z ~- z z  z z  Fl=S(f~ z f l - , - - P g l - - P g t - z )  (60) 

and E =  S2~l({m/})  is the classical ground-state energy, given by 

N 

E = S  z ~ {--A sin 01sin 01+I--COS Oleos 0/+1 
I = 1  

+ pA sin 01 sin 0/+2 + P cos 01 cos 0l+2} (61) 

Defining the Fourier-transformed operators 

1 a k = - - ~ e i k l a ,  (62) 

and 

1 e - ikl(l ? ~ 

we find that the Hamiltonian in momentum space is 

~ , =  y" {Akk, a~ak,  + , • lU* ~+ ~Bkk, aka  k, T ~ t .Pkk , - -  k a~, } + E 
kk '  

where A kk, and Bkk, a r e  given by 

and 

1 (eZ~ e_EL, ) A k k ' = ~ { ( e ~ + e - ~ ' ) A , +  + Cl+Fi} e i t k - k ' ) l  

(63) 

(64) 

(65) 

1 
cos 0 = - -  (67) 

4p 

In this case the classical helical structure has a constant pitch, that is, 
the angle between successive magnetizations is a constant. Writing 0r = 10, 
we find that the minimum of ~Vg~l({ml} ) gives 

3.1. The Case A =  1 

1 Bkk'=--~Y ". {(e-ik +e -ik') Bt+ (e-Eik +e-2ik')Dr} e -i~k+k'~l (66) 

Diagonalization of the Hamiltonian (64) yields the spin-wave dispersion rela- 
tion. This is obtained in two cases: (a) A = 1 (isotropic case), and (b)p = 1/2. 
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if p > 1/4 and 0 = 0 if p ~< 1/4. The coefficients in expressions (46) and (55) 
are then all independent of l and we g e t f  yy = f ~ =  cos 0 andf~Y = _f~/z= 
sin 0 and 

S 
A / =  - - 7 ( 1 + c o s  0) 

B / = - - ~ ( 1 - c o s  0) 

C t = p ~ ( l + c o s  20) 

S 
D l = p ~ ( 1 - c o s  20) 

F / = 2 S ( c o s  O - p  cos 20) 

The classical ground-state energy E is given by 

P 1 

i fp  > 1/4 and 

i fp  ~< 1/4. 
The coefficients 

Bk6k,--k', where 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

E = NS2( - 1 + p) (74) 

Ake, and Bkk" reduce to Akk,=AktSkk, and Bkk,= 

Ak = S{ -- ( 1 + cos 0) cos k + p( 1 + cos 20) cos 2k + 2 cos 0 - 2p cos 20} 

(75) 

and 

Bk = S{ - ( 1 - cos O) cos k + p( 1 - cos 20) cos 2k} (76) 

so that the Hamiltonian in momentum space will be 

aft' =y ,  {Aka~ak+�89 + E  (77) 
k 

Using a Bogoliubov transformation 

cx k =a k cosh Ck + a +_k sinh Ck (78) 

822/79/1-2-24 
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and choosing ~k so that  the coefficients of  the off-diagonal terms ~-cc+_k 
and ek0t_k vanish, we get the following Hamil tonian:  

out" = y" { e k ~  Ctk + �89 -- A~)} + E (79) 
k 

where the spin-wave dispersion relation is given by 

When p ~< 1/4 (the case in which the quan tum 
rigorously shown to be ferromagnetic)  we get 
for 8 k ' 

(8O) 

ground state was 
the following expression 

ek = 2S( 1 -- cos k - p + p cos 2k) 

which gives, for small k, 

i f p  < 1/4, as expected, and 

if p = 1/4. 

(81) 

e k = ~ k  4 (83) 

and 

When p > 1/4, the spin-wave spectrum ck vanishes for k = 0 and also 
for k = 0, with a linear dispersion relation 

ek=C Ikl, k --" 0 (84) 

ek=c Ik-OI, k ~ O  (85) 

The spin-wave velocity c is the same for both  cases and is given by 

S 
c = ~ p  (4p - 1 )3/2 (4,o + 1)1/2 (86) 

Figure 1 shows the dispersion relation ek versus k for the case of 
p = 1/2 and ~ = 1. Notice that  in this case ek vanishes at k = 0 and k = ~/3. 

The spin-wave representation can be used to calculate the reduction of  
the magnet izat ion due to quan tum fluctuations: 

m. S~ =S-I--/~a~.a#~=S-ivV~N\k / \ c , / '  (87) 

e k = S ( 1 - - 4 p )  k 2 (82) 
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Fig. 1. Dispersion relation e k versus k for the case p = 1/2 and A = 1. Notice that e k vanishes 
linearly at k = 0 and k = n/3.  

In the limit N ~ ~ ,  we get 

1 : 1 / Ak) 
m~ = S - ~ - ~  J_,, ~ ~1 ---~k d k  (88) 

When p > 1/4, the integral diverges due to the linear dispersion relation 
given by Eq. (84) and the fact that  Ak is a nonzero constant for k = 0. This 
indicates that the (classical) helical structure is destabilized by quantum 
fluctuations, no matter how large S is. 

3.2 .  T h e  C a s e  p =  1 /2  

Here we consider the case p = 1/2 and 0 < d < 1. In this case the classi- 
cal ground state corresponds to a modulated structure with a rotational 
number  equal to 1/6. The angles Ot have the following properties: 01+6 = 01. 
Choosing 

Oi =0  04=~ +0 

02  = ~ - 0 0 5  = 2 r t  - 0 (89) 

Os = ~ 06 = 0 
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we find that the minimum of the classical Hamiltonian gives a unique value 
for cos 8, namely 

1 
cos 0 = (90) 

I + A  

In the isotropic case (Section 3.1 ) there is a continuous family of degenerate 
ground states due to full rotation symmetry. In the present anisotropic case, 
in contrast, the only symmetry is rotation around the z axis which does not 
generate any other distinct eigenstates. 

We find that the coefficients A~, B~, C/, and Dt do not depend on I and 
are given by 

s f  A A k AI=-2Dt=-2 t +'i--+--A) 

B/= - 2CI = - ~ 

(91) 

(92) 

We find also that the coefficient Ft has the property Fj+3=FI so that it is 
necessary to know, for instance, only F_l ,  Fo, and F~. They are 

1 
F 0=3S  1 +A (93) 

and 

F_I =FI = 3 S A  (94) 

The classical ground-state energy E is given by 

The coefficients Ak,, and Bkk' reduce to 

(95) 

hkk '  = F ~ k , k ' -  2n/3 "-[" hk~k,k" d- F(~k,k, + 2n/3 (96) 

and 

Bkk, = BktSk,--k' (97) 
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where 

A k = S { A + l - ~ - - ( A + l - - ~ ) c o s k + l ( A - l ~ ) C o s 2 k }  (98) 

( ~  ~-) F=S l + d  (99) 

Bk=S { - ( A - l ~ ) C o s k  + l  (A + l - ~ ) c o s  2k } (100) 

so that the Hamiltonian in momentum space is 

~ff' = ~. { Aka~. ak + F(a~. ak + 2,~/3 + a~. ak_ 2~/3) 
k 

+ + +�89 k a k) }+E (101) 

We write the Hamiltonian in the form 

:,*ff'= ~ E ff~: Hk Ok-- �89 X Ak + E (102) 
k k 

where ~k is the column matrix consisting of the operators 

ak ak+2n/3 ak-2n/3 a+_k a+k_2n/3 a++_k+2n/3 

the row matrix ~ "  is its transposed Hermitian 
c-number Hermitian 6 x 6 matrix given by 

Hk = ( Q ~  Q~) (104) 

where 3 x 3 matrices Qk and R k are defined by 

Qk = Ak+2n/3  (105) 

F hk_2n/3 

and 

Oo) 
Rk = Bk + 2n/3 

0 Bk -- 2;x/3 

(103) 

a~oint, and Hk is the 

(106) 
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Next, we prove that the eigenvalues ek of the quadratic form ~ Hk@k 
are the square roots of the eigenvalues of the matrix (Qk-  Rk)(Qk + Rk). 

Let us defined the matrix G by 

- -  + _ _  * T , T T G -  [@k, @k ] =@k(@k) --(@k @k) (107) 

where @* is the column matrix of the Hermitian adjoint operators, and the 
superscript T stands for transpose. The matrix G is diagonal and its 
elements are actually c-numbers. It is given by 

G : ( ~  __0i) (108, 

where I is the 3 x 3 identity matrix. Suppose now that Tk is a linear trans- 
formation that diagonalizes the quadratic form in boson operators 
*~-Hk@k. That is, Tk is a square matrix such that @~ l-Ik@ k = ~F~. Dk~l'k, 
where ~l'k=Tk*k and Dk=T~-HkT~ is the diagonal eigenvalue matrix. 
Notice that Tk is not, in general, a unitary matrix. According to White 
et al., (2]) the diagonal eigenvalues of Dk are the same as the eigenvalues of 
the matrix 

G H k = (  -RkQk _R~k ) (109) 

Consider next the unitary matrix U defined by 

1 ( I Ii) (110) U = ~  - I  

Hence 

( 0 QkoRk)  (111) Mk = U r ( G H k ) U =  Qk_Rk 

will have the same eigenvalues of Dk. But 

M~= ( (Qk+ R k ) ( Q k - - R k )  0 ) (112) 
0 (Qk - Rk)(Qk + R~) 

and the proof is finished. Notice that the 3 x 3 matrices (Qk + Rk)(Qk- Rk) 
and ( Q k - - R k ) ( Q k + R k )  have the same eigenvalues, which we denote 
by '~'k' 

The resulting dispersion relation ek = ~ exhibits forbidden zones 
(gaps) in the excitation spectrum at k=~z/3 and at k=2~z/3. When .4---, 1, 
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zones  ( g a p s )  in the  s p e c t r u m  a t  k = n/3 a n d  k = 2n/3. 

the two gaps at k=n /3  and at k=2n/3  vanish as ~ ( 1 - - A )  1/2 and 
~ ( I -  A), respectively. Figure 2 shows the dispersion relation ek versus k 
for the case p = 1/2 and A = 1/2. In this case there are gaps at k = n/3 and 
k = 2 n / 3 .  

We considered in this section only one of the ground states with period 
six, which we refer to as case 1. Consider the other high-symmetry case 
with 0/+3 = n + 01 defined by 

01 = - 0 "  04=n-O* 

0 2 = O* 0 5 = ~ + O* 

03 = n/2 06=3n/2  

(113) 

which we refer to as case 2. The minimum of the classical Hamiltonian 
gives sin 0* =A/(1 + z  l) and the classical energy E coincides with that of 
case 1. Moreover, the Hamiltonian in momentum space will be the one 
given by Eq. (101) with Ak and Bk the same as in case 1. The only distinct 
coefficient is F, which is now given by F =  S[A/(1 + L I ) -  1/2]. 

In both cases the diagonalized Hamiltonian can be written in a form 
identical to (79), valid for the isotropic case, namely 

~ ,  _. ~ ek0t~- ~k + l y '  (ek - - A k ) + E  (114) 
k k 
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Table I. Spin-Wave Corrections to 
the Classical Ground-State Energy 

for Cases1 (~IE~)) and 2 (~E(~)) 
Corresponding to the Configurations 

Given by Eqs. (89) and (113), 
Respectively, for p = 1/2 

a ae~'/s a~'J'/s 

0 0 0 

0 . 2  - 0 . 0 1 0  - 0 . 0 0 4  

0 . 4  - 0 . 0 2 4  - 0 . 0 1 5  

0 . 6  - 0 . 0 4 0  - 0 . 0 3 2  

0 . 8  - 0 . 0 6 0  - 0 . 0 5 4  

1 - 0 . 0 9 0  - 0 . 0 9 0  

where E is the classical energy and ct k are the new boson operators, so that 
the energy EQ of the quantum ground state is given by 

EQ= �89 ~, (ek--Ak) + E (115) 
k 

This formula allows us to calculate the quantum correction ZlEQ = E Q -  E 
without the knowledge of the eigenvectors. Table I shows the values of 
zlE~ ) and zlE~ ~ for the cases 1 and 2, respectively. It is clear that case 1 
has lower energy, except in the cases d = 0 and A = 1, where they agree. 
Hence, case 1 is selected by the quantum fluctuations. 

4. THE HUSE-ELSER V A R I A T I O N A L  W A V E  FUNCTION 

Huse and Elser t16) proposed a very elegant variaional wave function 
for the ground state of spin-l/2 Heisenberg antiferromagnets on bipartite 
lattices. One of the most interesting features of their approach is the reduc- 
tion of a quantum problem, namely finding a variational ground state, to 
a numerical simulation of a long-range Ising model using standard Monte 
Carlo techniques. In order to understand our adaptation of their method 
it is convenient to review briefly their work. 

The Huse and Elser variational wave function (HEVWF) has the form 

]0> = ~  e m2 J~x> (116) 
~t 
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w h e r e / t  is an operator which contains the variational parameters and is 
not necessarily Hermitian; the { 10t)} are eigenstates o f / t  

/ t  lot> =2= lot> (117) 

and form a complete set of orthonormal basis functions. The expectation 
value of an operator (9, for instance, the Hamiltonian ~r in the ground 
state (116) is given by 

(0[ E910) ~-'-~,a# e 't*/2 (_gc,#e'~P/z=~~aeRe&y~g(gape~'~P -~,)/2 (118) 

where Re 2, stands for the real part of ).~. Equation (118) shows that, using 
the wave function (116), we end up evaluating the expectation value of 

d~=p exp{ �89 2=)} (119) 
p 

in an ensemble where configuration ot occurs with probability proportional 
to exp{Re2~}. Clearly, exp{Re2~} plays the role of a Boltzmann factor 
and this kind of average can be calculated using Monte Carlo methods. 

Note that the exact ground state can be written as in Eq. (116). 
However, when it is not known, choosing a good / t  is not trivial. For 
spin-l/2 Heisenberg antiferromagnets on bipartite lattices the essential 
ingredient seems to be a phase discovered by MarshallJ z2) He showed that, 
if one chooses a basis of eigenfunctions { lot)} of the operators S-'= ~ l  S~, 
the ground state can be written as 

10) = ~ ( - 1 ) "  a= lot) (120) 
~t 

where n= is the number of spins pointing down on one sublattice in 
configuration ot and the coefficients a ,  are all real and positive. Huse and 
Elser incorporated the Marshall phase ( - 1 )"~ = exp{inn,} in their wave 
function choosing the { Is)} as eigenstates of S= and 

� 8 9  Y. ' (~-s~) (12I) 

where the sum is over spins on sublattice B. Quantum corrections were 
introduced by taking the real part o f / t  as 

R e  ~ m z H - ~  K~jS, S~ (122) 
u 
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with Kij=K, if l i - j l  = 1 and K•=Kz/Ii--jI" if li--jl > 1. The param-  
eters K~, K2, and a are variational.  Fo r  the two-dimensional  spin- l /2  
Heisenberg antiferromagnet  on a square lattice the H E V W F ,  with K~ = 2.6, 
K 2 = 1.9, and a = 0.7, gives a variat ional ground-state  energy per link equal 
to -0 .3319,  which is less than 1% above the series est imateJ 23) 

The phase ( - 1 )" has a simple physical interpretat ion,  as first pointed 
out by Thouless r and emphasized in ref. 16. Observe that  

E e(I/2)iImB I ~ )  = I'-I ( I T ) , +  I,~)/) l--[ ( [ T ) i - I , [ ) / )  (123) 
ot i e A  i ~ B  

Recalling that  I T ) i - I ~ ) i are eigenstates of  S;.* with eigenvalues + 1/2, it is 
clear that  the imaginary par t  of  H gives the classical N6el ground state with 
spins on sublattice A (B) pointing in the positive (negative) x direction. We 
believe, al though we could not prove it, that  the best choice for I m / t  for 
any spin system gives the classical ground state. We used this Ansatz to 
construct our  variat ional wave function. 

In order  to keep our  nota t ion as in ref. 16 and 22, which use a basis 
of  eigenstates of  S z, we rotate our  coordinate  axes so that  the spin chain 
lies in the - direction. The Hamil tonian  becomes 

N 
= " " 

a e  - Z 

N 

+p ~. {S~'~S}'~+2+A(S~'S~'+,_+S~S~+=)} (124) 
i = l  

For  the isotropic case (A = 1 ) nothing changes. However ,  in the Ising case 
(A = 0) the spins now point  in the x direction. 

To determine the variational parameters ,  we have to calculate the 
expectation value of H in eigenstates of  S-" generated by a Monte  Carlo 
simulation. Thus, it is convenient to rewrite S x and S y in terms of  raising 
and lowering spin operators ,  S • SX + iS y, respectively, 

act~ = Z {�88 +A)D,.,+, +�88 - A ) E , a + ,  + AZ;.;+,} 
i 

- p Y. {�88 + A)D,.a+ 2 + �88 - A)E,a+2 + AZ,.,+=} 
i 

+ �88 - p)A (125) 

and 

D , j = S + S 7 + S F S  +, E , j=S+S2~+SFST,  Zu=S~S; -  �88 (126) 
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There is strong evidence in the isotropic case (A = 1; see Section 2) that the 
ground state of Hamiltonian (125) is a singlet. In this way we can restrict 
ourselves to the subspace of configurations with S ~ = 0. This restriction is 
implemented in our Monte Carlo simulation using a generalized Kawasaki 
dynamics where any pair of antiparallel spins can be exchanged in order 
to produce a new state. For the anisotropic case (A ~ 1) we sample the 
configuration space using the heat-bath Metropolis algorithm. 

For the classical isotropic system (A = 1) the lowest energy has 
helicoidal ordering. The spins lie in the xy plane and as one moves from 
one site to the next on the chain along the z axis, the spins rotate by a fixed 
angle Cpp. To find q~p we replace the operators Si in Eq. (124) by classical 
spins with components 

S~ = cos r SY= sin q~, S ~ = 0  (127) 

and minimize 3r with respect to ~0. In this way we obtain 

 ,--arcco  

and a classical energy given by E e l = - ( p +  1/8p)/4. As discussed above, 
Im ~ /2  should produce this classical configuration. To implement the spin 
rotation we choose 

N - - I  

1 D _ _  I m ~ n -  ~ ~/S~ (129) 
/ = 0  

where q~l = l~op and we take the real part  of n the same as in the HEVWF; 
see Eq. (122). 

We define the following notation: L stands for the chain size, NEQ 
is the number of Monte Carlo steps used to reach equilibrium, NSTEP is 
the number of Monte Carlo steps used to calculate the energy after equi- 
librating the system, and N R U N  is the number of independent runs, 
starting from different initial conditions, used to estimate the errors. We 
used periodic boundary conditions in all simulations. 

We summarize the results of our simulation of the isotropic model in 
Table II  and Fig. 3. Several comments are in order. In order to avoid com- 
mensurability problems, that is, changes in rotation angle between the first 
and last spins larger than q~p, the chain size is a multiple of the spatial 
period of the helix. The values of p were chosen so that this period is not 
too large. For fixed values of K~, K 2, and tr the statistical errors in the 
energy are usually very small; they are typically of the order of 10 -5 . 
However, there is another error source which reduces our precision. It is 
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Table II. Ground-State Energy E of the Helical 
Phase for Some Values of p~ 

L KI /(2 o ~pp p E 

440 0.9 1.0 0.01 zt/ll 0.2605 --0.1852 
320 3.6 4.0 0.07 7t/8 0.2705 --0.1835 
360 1.9 2.4 0.10 n/6 0.2886 --0.1821 
300 5.1 6.0 0.09 n/5 0.3090 --0.1820 
320 10.0 11.4 0.08 n/4 0.3535 --0.1866 
360 19.6 22.3 0.10 n/3 0.5000 --0.2242 

QThe rotation angle ~pp is related to p through 
cos ~pp= l/4p. The quantities K~, K_,, and a are varia- 
tional parameters. For all lattice sizes NEQ=5000, 
NSTEP = 5000, and NRUN= 16. 

associated with the determination of the best values of K~, K 2 ,  and tr. 
There are many combinations of K1, K2, and tr which give essentially the 
same value for the energy. This probably reflects the fact that these 
parameters are not independent. A more careful estimate would put the 
uncertainty in the energy equal to about 0.0001. But we believe that the 
error is not much larger that this value. It is also worth mentioning that 
finite-size effects are negligible. Reducing the lattice size by a factor 10 
changes the energy by less than 0.4 % in the worst case. 

The state where all spins point in the same direction is the eigenstate 
of Hamiltonian (124) associated with the ferromagnetic phase. Its energy, 
for A = 1, is given by 

E F 1 
N = 4  ( p -  1) (130) 

For p < 1/4 the ferromagnetic phase has lower energy than the helicoidal. 
For p > 1/4 the situation is reversed. Thus, the transition between the two 
phases occurs at p = 1/4, in agreement with the results of Section 2. These 
results are illustrated in Fig. 3, where we have also plotted the asymptotic 
behavior for p ~ ~ .  In this limit the term multiplied by p in Hamiltonian 
(124) is dominant and the system behaves as two noninteracting isotropic 
Heisenberg chains. In this case the ground-state energy is given by the 
Bethe Ansatz and the equation of the dotted straight line in Fig. 3 is given 
by 

E=2ep (131) 

where e = -0.22157 is the energy per site of one chain. 
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Fig. 3. Ground-state property of the helical phase for some values o f p  (filled circles). The 
dotted line is drawn only to guide the eye. The solid line gives the energy of the ferromagnetic 
phase. The dashed line is the asymptotic behavior of the model in the limit p ~ c~ and is given 
by the Bethe Ansatz. 

The results shown in Table lI for p >  1/4 were obtained using 
Kawasaki dynamics, which kept the system in the M = 0 sector. The same 
simulations were performed by using the heat-bath algorithm, which allows 
the system to sample all M sectors. The results obtained were the same 
within the errors. Thus, the agreement between the two algorithms for 
p > 1/4 gives strong evidence that the ground state belongs to the M =  0 
sector for A = 1. This is in contrast to the case p < 1/4, where the ground 
state is ferromagnetic and the Kawasaki algorithm, which keeps the system 

Rotation of the classical spins in the ( 6 )  phase when 0 ~< A < I. Fig. 4. 
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in the M =  0 sector, gives a poor energy bound. In this case, only the 
heat-bath algorithm gives a good ground-state energy. 

We have also investigated numerically the ( 6 )  phase in the 
anisotropic case. When A = 1 (isotropic case), the rotation angle ~pp = n/3 .  

As A decreases to zero (Ising case) the spatial period remains equal to six 
lattice units, but the rotation angle is not uniform as we move along the 
chain; see Fig. 4. The angle 0A in Fig. 4 can be obtained replacing the 
operators St in Hamiltonian (124) by classical spins in the x y  plane, that 

x is, S t - cos 0t and S~ = sin 0t, where 

06k = 0 

06k + I = 0 

06k+2 = n -- 0 

0 6 k + 3  ~ 

06k+4=1['-I-0 

06k + 5 = 2n  - 0 

(132) 

where 0 ~< k < N / 6 ,  and minimizing the energy with respect to 0. Due to the 
factorization of the p dependence in the energy, the angle Oa does not 
depend onp,  

(1) 0z=arccos  ~ (133) 

For this value of 0 the classical energy is 

Ec~ 1 ( + 1 ) 
N 1 2 ( l + p )  A ~ (134) 

We implemented the nonuniform rotation choosing q~t in Eq. (129) in such 
a way that the spins point in the direction of the classical vectors given by 
(132) with 0 = Oz. 

In Table III we fix p = 1/2 and present the ground-state energy of the 
( 6 )  phase for several values of A. For comparison we also give the classi- 
cal energy Ect; see Eq. (130). Except for d = 0 ,  the quantum corrections 
introduced by the real part of 9 lower the energy. For A = 0, the classical 
wave function, obtained with Re/-1= 0, gives the lowest energy and the 
behavior of the chain is of the Ising type. Apparently the crossover between 
the Isingand the helical behavior occurs at A = 0. Even for A = 0.1 it is not 
difficult to obtain a variational wave function which gives an energy less 
than the classical one. 

Since Re H and Im H, which depends only on 0a, are both independ- 
ent of p, the variational wave function for the ( 6 )  phase is p independent. 
Examining Eq. (125), we note that we can determine <0] ~ ]0 ) / ( 0  ]0> by 
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T a b l e  II I .  Phase  B o u n d a r i e s  ~ 

K I K 2 ff zJ V l (z l  ) V2(z]) PF6 P62 

0.0 0.0 - -  0.00 -0.0833 0.0833 0.500 0.500 
0.1 3.3 2.5 0.25 -0 .0846 0.1009 0.471 0.567 
0.4 3.8 1.6 0.50 -0.0888 0.1400 0.413 0.807 
6.0 8.6 0.3 0.75 -0 .0952 0.1886 0.353 1.550 

19.6 22.3 0.1 1.00 -0 .1102 0.2281 0.292 5.032 

For each value of the anisotropy zl we give the corresponding values of p 
on the boundaries between the ferromagnetic phase and the ( 6 )  phase 
(Pr6) and between the <6)  phase and the <2)  phase (P62). The quantities 
V,(A) and V_,(A) are given by Eq. (135), and Ki,  K, ,  and a are variational 
parameters. For all A, L = 360, NEQ = 5000, NSTEP = 5000, and 
NRUN= 16. 

first calculating separately the expectation values of the terms with inter- 
actions between nearest neighbors and next nearest neighbors and intro- 
ducing the p dependence later. Thus 

<01~10> V1(A)-pV2(A) (135) 
(010) 

where 

_ j  V <Ol 2,._~+~ IO) 
,~., ( 0 1 0 )  N ~  

(136) 

with ~ = 1, 2. 
In this way, for each value of A we obtain the energy of the ( 6 )  phase 

for all p. Equating Eq. (135) with Eq. (130), which gives the exact energy of 
the ferromagnetic phase, we can determine the boundary between these two 
phases. In Fig. 5 this boundary is represented by the solid line. The dotted 
line in the same figure represents the maximum possible extension of the 
( 6 )  phase. It qeas found in the following way. For A = 0, the vector 

1 + +  . . . . .  ) = l + )  1 + ) 1 - ) 1 - ) ' "  (137) 

where I + )  and I - )  are eigenstates of S~, is the eigenstate of Hamiltonian 
(124) associated with the ( 2 )  phase. For A>0 ,  the vector (137) is no 
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Phase boundaries. The coordinates of circles (A,Pr6) and triangles (A,p62) are given 
in Table III. The lines are drawn only to guide the eye. 

longer an eigenstate of (124). However, we can show that there are values 
of p for which the energy 

( + +  . . . . .  I ~ 1 + +  . . . . .  ) 1 
( + +  . . . . .  I + +  . . . . .  ) = - ~ N ;  (138) 

is less than the energy of the ( 6 )  phase, given by Eq. (135). This suggests, 
in analogy with the classical case, that the ( 6 )  phase does not extend itself 
indefinitely to the right of the diagram in Fig. 5. The values of V=('4), with 

= 1, 2, for some values of'4 and the coordinates of the points in Fig. 5 are 
given in Table III. 

Thus, numerical simulations for the isotropic chain (.4 = 1) are in 
agreement with the results of Section 2, where it was shown that, at p = 1/4, 
the system undergoes a transition from a ferromagnetic to a helicoidal type 
phase. In addition, simulations of the anisotropic chain (0 ~< .4 < 1 ) suggest 
the existence of a very rich phase structure where the quantum analogs of 
the classical modulated phases occupy well-defined regions of the phase 
diagram. 

It should be emphasized that Fig. 5 is not really a ground-state phase 
diagram, but only part of the (conjectured) phase diagram, since other 
phases were not examined. There may be other commensurate, incommen- 
surate, and/or disordered phases in the real phase diagram. 
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5. CONCLUSION 

We have shown that Monte Carlo results, obtained using the Huse- 
Elser variatonal wave function with a phase which gives the classical ground 
state, are in good agreement with other methods. For antiferromagnets on 
a bipartite lattices this classical phase is an exact result. We believe, although 
we could not prove it, that this classical phase is an essential ingredient of 
the exact ground-state wave function of any quantum spin system. But even 
if it is only an approximate property, it can be used to classify the quantum 
phases. In this way it is possible to draw phase diagrams similar to the ones 
found in classical theories. 

In spite of the various results presented in this paper, much remains to 
be done. One of the open problems is to complete the phase diagram, i.e., 
the conjectured line to the right of the point p = 1/2. Another question is 
the interesting conjecture that the gaps found in Section 3 are (quantum) 
boundaries of other stable ground states, analogous to the commensurate 
phases of other models (e.g., ref. 13). Is there a "devil's staircase" of 
such gaps? Of course, these problems, fascinating as they are, must be 
considered with due caution. Indeed, one expects that fractal structures 
disappear upon quantization. For instance, the strange attractor in the 
Kaplan-Yorke map t251 (see also ref. 9) disappears when the map is quan- 
tized due to the delocalization of the individual branches of the attractor 
by quantum interference effects. C26) However, it is not clear what replaces 
the fractal structures in the quantum version of these systems, and we hope 
that the present study will stimulate interest in such problems. 

Finally, the existence of a critical size of the clusters in the Bader- 
Schilling method and which is achieved for a small, almost minimal, number 
of spins is very surprising. This feature has also been found to be present in 
a one-dimensional model of ferromagnetic domains. ~27~ It is intriguing to 
determine whether it holds in higher dimensions. 
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